2501/203 2508/203 2502/203 2509/203 2503/203 ENGINEERING MATHEMATICS II June/July 2023 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION OPTION) (PLANT OPTION) DIPLOMA IN AUTOMOTIVE ENGINEERING DIPLOMA IN WELDING AND FABRICATION DIPLOMA IN CONSTRUCTION PLANT ENGINEERING

MODULET

ENGINEERING MATHEMATICS II

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Mathematical tables/ Non-programmable scientific calculator.

Answer FIVE of the following EIGHT questions.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Candidates should answer the questions in English.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) In an arithmetic progression, the sum of the first 9 terms is 3, and the 18th term is three times the 9th term. Determine the:
 - (i) common difference;
 - (ii) first term;
 - (iii) sum of the first 20 terms.

(10 marks)

- (b) In a geometric progression the fourth term exceeds the fifth term by 4 and the sum of these two terms is 20. Determine the:
 - (i) common ratio;
 - (ii) first term;
 - (iii) sum of the first seven terms.

(10 marks)

2. (a) From first principles, determine the first derivative of the function.

$$f(t) = e^{2t} ag{6 marks}$$

- (b) Investigate the stationary points of $y = \frac{x^3}{3} + \frac{5}{2}x^2 + 6x + 8$ and determine their nature; hence sketch the curve. (14 marks)
- 3. (a) Use Taylor's theorem to expand $\cos(\frac{\pi}{3} + h)$ in ascending powers of h up to the term in h^3 . (6 marks)
 - (b) (i) Using Maclaurin's theorem; obtain the power series of $\sin x$ up to the term in x^3 .
 - (ii) Expand $\frac{1}{\sqrt{(1-x^2)}}$ using binomial theorem up to the term in x^3 .
 - (iii) Hence using (b)(i) and (b)(ii) evaluate

$$\int_0^{\frac{\pi}{4}} \frac{\sin x}{\sqrt{1-x}} dx$$

Correct to three decimal places.

(14 marks)

4. (a) Evaluate the integrals:

$$(i) \qquad \int \frac{dx}{4x^2 + 8x + 7}$$

(ii)
$$\int_{3}^{6} \frac{4x}{(x-1)(x+1)^{2}} dx$$

(12 marks)

- (b) Sketch the region enclosed by the curves $y = \sqrt{x}$ and $y = \frac{x^2}{8}$. Hence determine the area of the enclosed region. (8 marks)
- 5. (a) Table 1 shows the number of overtime hours claimed in a certain year by production workers in a tyre factory.

Table 1

				_		
55	25	57	34	84	18	52
18	20	68	48	56	67	45
64	60	35	37	69	61	71
43	32	63	53	65	24	80
38	30	78	28	75	44	66
23	29	40	44	33	36	31
36	48	50	46	42	48	57
41						

- (i) construct a frequency distribution table starting from 15 25 ... (3 marks)
- (ii) Using the result of (a)(i) draw a histogram, hence determine the modal value.

 (5 marks)
- (b) Table 2 shows the scores distribution of the candidates interviewed to join a mechanical engineering class.

Table 2

Scores	No. of candidates		
10 - 20	60		
20 - 30	80		
30 - 40	90		
40 - 50	110		
50 - 60	60		
60 - 70	50		
70 - 80	40		

Determine the:

- (i) mean number of candidates;
- (ii) median;
- (iii) mode;
- (iv) standard deviation.

(12 marks)

- 6. (a) A manufacturer knows that the components he makes contain an averages 0.8% of defectives. He packs them in packets of 6. Determine the probability that a packet picked at random will contain 4 or more faulty components. (4 marks)
 - (b) A random variable x has a probability density function defined by:

$$f(x) = \begin{cases} kx & , & 0 \le x \le 1 \\ k(2-x) & , & 1 \le x \le z \\ 0 & , & elswhere \end{cases}$$

Determine the:

- (i) value of the constant k;
- (ii) mean;
- (iii) variance;
- (iv) $\Pr\left(\frac{1}{4} < x < \frac{3}{2}\right)$.

(16 marks)

7. (a) Show that the three vectors:

$$\begin{split} \underline{a} &= 2\underline{i} - \underline{j} + \underline{k} \\ \underline{b} &= \underline{i} - 3\underline{j} - 5\underline{k} \\ \underline{c} &= 3\underline{i} - 4\underline{j} - 4\underline{k} \end{split}$$

form the sides of a right angled triangle.

(10 marks)

- (b) A particle experience forces of magnitude 2, $4\sqrt{2}$, 6 and 8 inclined at angles of 30° , 45° ,60° and 120° respectively to a given reference direction ox. By using resolution of vectors, find the:
 - (i) magnitude;
 - (ii) direction of the resultant force.

(10 marks)

(a) Figure 1 shows a solid made up of two parts: a cylindrical bottom and a conical top. The base has a radius R and height H, with a top truncated cone portion whose topmost radius is r and a vertical height of h form the top of the cylinder. It also has a semi-spherical base ABC as shown.

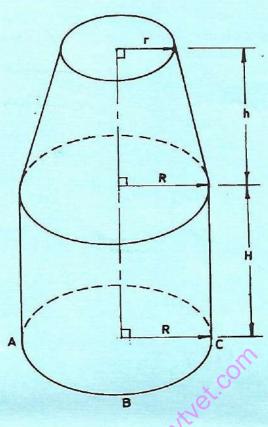


Fig.1

Taking r = 4 cm, R = 7 cm, h = 3 cm and H = 10 cm. Determine the:

- (i) total surface area;
- (ii) volume of the solid in litres.

(12 marks)

8.

- (b) Figure 2 shows a regular solid with $< CAD = 34^{\circ}, < CBD = 28.5^{\circ}$ and $\triangle ADB, \triangle CDA$ and $\triangle CDB$ are right angled at D. Given that AB = 22.5 cm; determine:
 - (i) height, h
 - (ii) volume of the solid ABCD correct to four decimal places.

(8 marks)

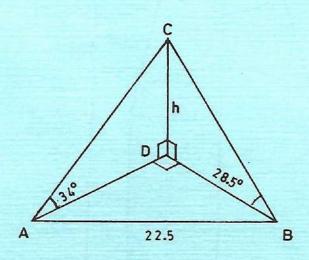


Fig 2